X-ray attenuation coefficient of carbon for $\mathbf{C u} K \boldsymbol{\alpha}_{1}$ radiation. By L. D. Calvert,* Division of Chemistry, National Research Council of Canada, Ottawa, Canada, K1A 0R9 and R. C. G. Killean \dagger and A. McL. Mathieson, Division of Chemical Physics, CSIRO, P.O. Box 160, Clayton, Victoria, Australia 3168
(Received 29 April 1975; accepted 2 June 1975)

The X-ray attenuation coefficient of carbon at $\lambda\left(\mathrm{Cu} K \alpha_{1}\right)$ has been measured with a specimen of highly oriented pyrolytic graphite, tilted to average inhomogeneities and change the beam path length. The values determined are $\mu\left(\mathrm{Cu} K \alpha_{1}\right)=9 \cdot 246$ (5) cm^{-1} and $\mu / \varrho\left(\mathrm{Cu} K \alpha_{1}\right)=4.080(2) \mathrm{cm}^{2} \mathrm{~g}^{-1}$. For $\mathrm{Cu} K \bar{\alpha}$, the derived value is $4.089(2) \mathrm{cm}^{2} \mathrm{~g}^{-1}$ and this differs significantly from the latest value, $4.219 \mathrm{~cm}^{2} \mathrm{~g}^{-1}$ given in Vol. IV of International Tables for X-ray Crystallography.

The attenuation coefficient of carbon for $\mathrm{Cu} K \alpha_{1}$ ($\lambda=$ 1.54056 A) X-rays was measured in the course of studies of the polarization factors for highly-oriented pyrolytic graphite crystals (Calvert, Killean \& Mathieson, 1974a). The crystal examined in this particular experiment was a commercially available Union Carbide product, grade ZYA, with a nominal mosaic spread of 1°. A uniform plane-polarized beam of X-rays having a divergence of 7^{\prime}, a circular cross section of diameter approximately 1 mm and an intensity of 17 kcounts s^{-1} was produced by reflexion from a pyrolytic graphite crystal (Calvert, Killean \& Mathieson, 1974b). This beam was passed through another pyrolytic graphite crystal in order to determine the attenuation coefficient of carbon. The measurements were carried out using a device previously described (Mathieson, 1968). With this device the tilt angle of the specimen can be varied in angular steps from about 10° to the direct beam to 100° to the direct beam. This reduces effects due to possible inhomogeneities in the specimen crystal although these are small (Moore, 1973). It also assists in detecting and hence avoiding the occurrence of any diffraction conditions.

The thickness of the specimen crystal was measured several times at the corners of the crystal with a micrometer having a sensitivity of $2.5 \times 10^{-5} \mathrm{~cm}$, and over the area traversed by the X-ray beam with a specially constructed Sheffield air gauge sensitive to $2.5 \times 10^{-4} \mathrm{~cm}$. The mean thickness was determined as $0 \cdot 1092(3) \mathrm{cm}$. The density was taken to be $2.266 \mathrm{~g} \mathrm{~cm}^{-3}$ (Moore, 1973). The low impurity level in highly oriented pyrolytic graphite specimens - probably less than 20 p.p.m. by weight and mostly due to silicon (Moore, 1973) - was neglected.

At each setting of the crystal 10^{6} counts were accumulated and the direct beam was measured to this same precision before and after the transmitted-beam measurements. This established the mechanical and electronic stability of the system and showed that no corrections for drift needed to be applied. The counts were corrected for the system dead-time, which was measured by the method due to Chipman (1969) as 2.54×10^{-6} s. A correction was also applied for the background counting rate of 0.15 counts s^{-1}. Tests showed that no $\lambda / 2$ component was detectable.

The linear and mass attenuation coefficients were determined respectively by calculating the mean values of μ and μ / ϱ from the data in Table 1 from the relationship

[^0]\[

$$
\begin{equation*}
\mu=\frac{\sin \omega}{t} \cdot \ln \left[\frac{I_{0}}{I(\omega)}\right] \tag{1}
\end{equation*}
$$

\]

where
ω is the angle between the crystal face and the direct beam,
I_{0} is the intensity of the direct beam incident on the crystal,
$I(\omega)$ is the intensity of the direct beam after passing through the crystal,
t is the thickness of the crystal,
$\varrho \quad$ is the density of the specimen crystal.
Table 1. The linear attenuation coefficient, μ, calculated from (1)
The dead-time corrected incident beam had an intensity of $17437.7 \mathrm{c} \mathrm{s}^{-1}$. The mean value of μ is 9.246 (5) cm^{-1} and of μ / ϱ is $4.080(2) \mathrm{cm}^{2} \mathrm{~g}^{-1}$. The angle ω was reset for each measurement.

$\omega\left({ }^{\circ}\right)$	$I(\omega)\left(\mathrm{c} \mathrm{s}^{-1}\right)$	$\mu\left(\mathrm{cm}^{-1}\right)$
89.997	$6325 \cdot 5$	$9 \cdot 286$
89.997	$6350 \cdot 8$	$9 \cdot 250$
89.997	$6355 \cdot 4$	$9 \cdot 243$
89.997	$6371 \cdot 2$	$9 \cdot 220$
88.95	$6348 \cdot 8$	$9 \cdot 251$
$88 \cdot 90$	$6337 \cdot 5$	$9 \cdot 267$
88.90	$6368 \cdot 5$	$9 \cdot 222$
88.35	$6360 \cdot 3$	$9 \cdot 232$
87.79	$6337 \cdot 6$	$9 \cdot 262$
87.79	$6367 \cdot 2$	$9 \cdot 219$
87.79	$6361 \cdot 9$	$9 \cdot 227$
87.79	$6358 \cdot 4$	$9 \cdot 232$
$87 \cdot 79$	$6328 \cdot 0$	$9 \cdot 276$
87.24	$6342 \cdot 7$	$9 \cdot 251$
$86 \cdot 69$	$6339 \cdot 3$	9.251

The statistical errors in both I_{0} and $I(\omega)$ are negligible compared with those in t, the standard error in the mean value of μ being $0.007 \mathrm{~cm}^{-1}$. This error is to be compared with the statistical standard error in the mean value computed from the spread of values in Table 1 of 0.005 cm^{-1}. The values of the coefficients obtained are $\mu\left(\mathrm{Cu} \mathrm{K} \alpha_{1}\right)$ $=9 \cdot 246(5) \mathrm{cm}^{-1}$ and $\mu / \varrho\left(\mathrm{Cu} K \alpha_{1}\right)=4.080(2) \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

The experimental values of the mass attenuation coefficient for $\mathrm{Cu} K \bar{\alpha}$ listed in International Tables for X-ray Crystallography (1962) range from 3.84 to $5.56 \mathrm{~cm}^{2} \mathrm{~g}^{-1}$ The nearest to our linearly interpolated value for $\mu / \varrho(\mathrm{Cu}$ $K_{\bar{\alpha}}$) of $4.089(2)$ is $4.15 \mathrm{~cm}^{2} \mathrm{~g}^{-1}$ (Chipman, 1955) but unfortunately there is no standard error quoted for this value. It is of interest that International Tables (1962) quotes a private communication from Dr H. J. Milledge which gives a mean value for the mass attenuation co-
efficient of carbon of $4 \cdot 17 \mathrm{~cm}^{2} \mathrm{~g}^{-1}$. This value was obtained from twenty-three measurements on thirteen different diamond crystals with a spread of results from 3.95 to $4.54 \mathrm{~cm}^{2} \mathrm{~g}^{-1}$.

Recently the tabulated value of the mass attenuation coefficient derived from smoothed functions of the mass attenuation coefficient against wavelength has been revised from $4.60 \mathrm{~cm}^{2} \mathrm{gm}^{-1}$ (International Tables for X-ray Crystallography, 1962) to $4.219 \mathrm{~cm}^{2} \mathrm{gm}^{-1}$ (International Tables for X-ray Crystallography, 1974): with this value is associated a $\pm \leq 2 \%$ 'envelope of uncertainty' i.e. $\pm \leq 0.084$ $\mathrm{cm}^{2} \mathrm{~g}^{-1}$ and hence the outer limits of $4.219 \mathrm{~cm}^{-2} \mathrm{~g}^{-1}$ are $\leq 4.303 \mathrm{~cm}^{2} \mathrm{~g}^{-1}$ and $\geq 4.135 \mathrm{~cm}^{2} \mathrm{~g}^{-1}$. If these limits are taken to imply $\sigma \leq 0.028 \mathrm{~cm}^{2} \mathrm{~g}^{-1}$ then the difference between the International Tables value of $4.219 \mathrm{~cm}^{2} \mathrm{~g}^{-1}$ and our derived value of $4.089(2) \mathrm{cm}^{2} \mathrm{~g}^{-1}$ (for $\mathrm{Cu} K_{\bar{\alpha}}$) is significant. Clearly, in the most accurate experimental work, it is still essential to determine the mass attenuation coefficient experimentally.

References

Calvert, L. D., Killean, R. C. G. \& Mathieson, A. McL. (1974a). Abstracts, International Crystallography Conference. 'Diffraction Studies of Real Atoms and Real Crystals', pp. 88-89. Canberra: Australian Academy of Science.
Calvert, L. D., Killean, R. C. G. \& Mathieson, A. McL. (1974b). J. Appl. Cryst. 7, 406.
Chipman, D. R. (1955). J. Appl. Phys. 26, 1387.
Chipman, D. R. (1969). Acta Cryst. A 25, 209-213.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 160-162. Birmingham: Kynoch Press.
International Tables for X-ray Crystallography (1974). Vol. IV, p. 61. Birmingham: Kynoch Press.
Mathieson, A. McL. (1968). Rev. Sci. Instrum. 39, 18341837.

Moore, A. W. (1973). Chemistry and Physics of Carbon, Vol. XI, pp. 87, 106, 107. New York: Marcel Dekker.

Acta Cryst. (1975). A31, 856

The information contained in neutron powder diagrams of magnetic materials. By C. Wilkinson,* Institute of
Physics, University of Uppsala, Box 530, S-751 21 Uppsala 1, Sweden
(Received 16 April 1975; accepted 24 May 1975)
A reciprocal-space treatment is given of the effects of reflexion averaging on the information available from magnetic neutron powder diagrams. The results confirm those previously obtained by spin-density Patterson methods.

Introduction

Shirane (1959) has described the effects of reflexion overlap in powder patterns of magnetic materials which have a unique spin direction. The results have been extended to multi-spin axis structures by Wilkinson \& Lisher (1973) using a spin density Patterson (real-space) treatment and subsequently verified by Litvin (1974) using group-theoretical methods. The present note reports the equivalent reciprocal-space treatment for multi-spin axis structures.

Theory

From the work of Halpern \& Johnson (1939), the magnetic contribution to the $h k l$ neutron diffraction line from a magnetically ordered material can be shown to be proportional to $I(\mathbf{k})=|\mathbf{P}(\mathbf{k})|^{2}-|\hat{\mathbf{k}} \cdot \mathbf{P}(\mathbf{k})|^{2}$, where $\mathbf{P}(\mathbf{k})$ is a 'vector structure factor' defined by $\mathbf{P}(\mathbf{k})=\sum_{i=1}^{n} \mathbf{S}_{l} f_{l}(\mathbf{k})$ $\times \exp 2 \pi j \mathbf{k} . \mathbf{r}_{l}$ for a magnetic unit cell in which the atoms are in positions \mathbf{r}_{i} and have spins \mathbf{S}_{i} and form factors $f_{i} . \mathbf{k}$ is the scattering vector for the $h k l$ reflexion and $\hat{\mathbf{k}}$ is a unit vector in the direction of \mathbf{k}.

Thus

$$
\begin{aligned}
I(\mathbf{k}) & =|\mathbf{P}(\mathbf{k})|^{2}-|\hat{\mathbf{k}} \cdot \mathbf{P}(\mathbf{k})|^{2} \\
& =|\mathbf{P}(\mathbf{k})|^{2}[1-\hat{\mathbf{k}} \cdot \hat{\mathbf{P}}(\mathbf{k})]^{2} \\
& =|\mathbf{P}(\mathbf{k})|^{2} \sin ^{2} \tau
\end{aligned}
$$

* On sabbatical leave from Queen Elizabeth College (University of London), Campden Hill Road, London W8 7AH.
where τ is the angle between \mathbf{k} and $\mathbf{P}(\mathbf{k})$.
Now

$$
|\mathbf{P}(\mathbf{k})|^{2}=\sum_{i=1}^{n}\left|\mathbf{S}_{l}\right|^{2} f_{i}^{2}+2 \sum_{i \neq j}^{n} \mathbf{S}_{l} \cdot \mathbf{S}_{j} f_{i} f_{j} \cos 2 \pi \mathbf{k} \cdot\left(\mathbf{r}_{l}-\mathbf{r}_{j}\right)
$$

and the information contained in $|\mathbf{P}(\mathbf{k})|^{2}$ therefore concerns the magnitudes of the spins $\mathbf{S}_{1} \ldots \mathrm{~S}_{n}$ and the relative angles between them. There are no terms involving the orientation of the spins relative to the crystallographic axes of the material. This dependence is contained within the term $\sin ^{2} \tau$, and as shown by Shirane it is the averaging of this term over overlapped reflexions which results in a loss of information when the configurational symmetry is higher than orthorhombic.

In fact, it is easy to show that $\mathbf{P}(\mathbf{k})$ is identical for reflexions of the form $\{h k l\}$ related by the configurational symmetry axis. Consider, for example, a magnetic structure with tetragonal configurational symmetry. Atoms in positions $x, y, z ; \bar{y}, x, z ; \bar{x}, \bar{y}, z ; y, \bar{x}, z$ related by the configurational tetrad have identical spins \mathbf{S} and the expression for $P(k)$ is

$$
\begin{aligned}
\mathbf{P}(h k l) & =\sum_{i=1}^{n} \mathbf{S}_{l} f_{i}\left\{\exp \left[2 \pi j\left(h x_{i}+k y_{i}+l z_{i}\right)\right]\right. \\
& +\exp \left[2 \pi j\left(h \bar{y}_{i}+k x_{i}+l z_{i}\right)\right] \\
& +\exp \left[2 \pi j\left(h \bar{x}_{i}+k \bar{y}_{i}+l z_{i}\right)\right] \\
& \left.+\exp \left[2 \pi j\left(h y_{i}+k \bar{x}_{i}+l z_{i}\right)\right]\right\}
\end{aligned}
$$

where the symmation is taken over all groups related by the fourfold axis. The reflexion $k h l$ has

[^0]: * N.R.C. No. 14780.
 \dagger On leave from School of Physical Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, Scotland.

